홈 혜스케어를 위한
휴대형 유방암 진단 시스템

- A Portable Breast Cancer Detection System
for Home Health Care

Jiwon Jamie Ryu, MS Candidate
Interdisciplinary Program - Bioengineering Major,
Graduate School, Seoul National University

http://melab.snu.ac.kr
Contents

- Introduction
 - Breast Cancer
 - Challenges of Present Scanning Methods

- Materials and methods
 - Hardware
 - Experimental Procedure
 - Sample Phantom Model Preparation

- Results and discussion
 - Sensor Calibration
 - Breast Cancer Dummy Scanning
 - Phantom Model Scanning

- Conclusion
Introduction

Breast Cancer Statistics

Incidence

Source: National Cancer Registry, Institute of Health Information and Statistics of the Czech Republic
Introduction

Breast Cancer Detection

- **Tumor Size Detection**

 - by a woman who rarely examines her own breasts: 49mm
 - by a woman who occasionally examines her own breasts: 31mm
 - by a woman who examines her own breasts every month: 19mm
 - by a doctor or nurse giving a clinical breast exam: 13mm
 - on a woman’s first mammogram: 8mm
 - by getting mammograms every 1-2 years: 5mm

- **Tumor Shape**

 - Irregular shape
 - feel bumpy
 - **very hard**
 - like a bit of raw carrot

http://www.publichealthgrandrounds.unc.edu/brcancer/necklace.htm
Introduction

Breast Cancer Diagnosis Modalities

- Breast Self Exam (BSE)
- Ultrasound (US)
- Mammography
- Pressure Imaging (PI)

Invasive

Biopsy

Accurate

Inaccurate

Non Invasive
Introduction

Breast Self Exam

Pros.
- Possible regular check up
- Comfortable

Cons.
- Lack of confidence
 - Don’t know what to feel for
- Limited tactile sensitivity
 - With a bare hand

Breast self-exam: Manual examination (standing)
Introduction

– Ultrasound

Pros.
• Sensitive
• Harmless

Cons.
• Not for routine examination
• Uncomfortable
• Bulky
Introduction – Mammography

Pros.
- Sensitive

Cons.
- May cause defects (X-Ray)
- Longer examination time
- Bulky

(a) genglob.com
(b) http://blog.daum.net/e-vven/17202447
(c) www.christchurchradiology.co.nz/...ography/
Introduction – Pressure Imaging

Pros.
- Harmless

Cons.
- Clinical use only
- Expensive

(a) www.healthmanagementmedia.co.za/
(b) (c) http://www.pressureprofile.com/case-study-mti.php/
Common Screening Methods

- Bulky & Heavy
- Clinical use only
- Expensive
- Uncomfortable
- Inconvenient

Breast Self Examination

- Indefinite decision
- Limited tactile sensitivity

Proposed System

- Home health care use
- Cheap
- Comfortable
- Definite decision
- Magnified tactile
- Real Time
Material and Methods

- Hardware

Hardware Block Diagram

- **Hardware Specification**
 - Flexiforce Force Sensing Resistor (FSR) 1 lb (450g) Multi-Array
 - Micro-controller
 - 6Hz Low pass filter
 - 12 Bit ADC
 - 50 Hz Data Sampling
 - Wireless (Bluetooth)
 Material and Methods

– Experimental Procedure

- Breast Scanning to detect Pressure Change vs. Time

- Fact
 Breast : <100kPa
 Tumor : >100kPa

- Device Pressure
 20g = user maximum force with the device
 (Pressure value from the device < 100)
Material and Methods

Sensor Calibration

- Multi-Sensor Array
- Calibration Experimental Set-up

[Image of a multi-sensor array]

[Diagram showing a sensor calibration experimental set-up with a manipulator, distance meter, and scale]
Results and Discussion
– Sensor Calibration

- Calibration

- Resting Position

- Breast (without Tumor)
Material and Methods

Phantom Model

Tumor

<table>
<thead>
<tr>
<th>Phantom Number</th>
<th>Size (mm)</th>
<th>Depth (mm)</th>
<th>Hardness (silicone: curing reagent)</th>
<th>Young’s Modulus (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>1:1</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>10</td>
<td>1:1</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>10</td>
<td>1:1</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>10</td>
<td>1:1</td>
<td>300</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>5</td>
<td>1:1</td>
<td>300</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>10</td>
<td>1:1</td>
<td>300</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>15</td>
<td>1:1</td>
<td>300</td>
</tr>
<tr>
<td>8</td>
<td>17</td>
<td>20</td>
<td>1:1</td>
<td>300</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>10</td>
<td>1:1</td>
<td>300</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td>10</td>
<td>1:5</td>
<td>297</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>10</td>
<td>1:10</td>
<td>288</td>
</tr>
<tr>
<td>12</td>
<td>17</td>
<td>10</td>
<td>1:15</td>
<td>142</td>
</tr>
</tbody>
</table>

Breast: Silicon Rubber, 31 kPa
Results and Discussion

Breast Cancer Dummy

- Dummy Specification
 Tumor Size: 20mm
 Location: 2mm down

- Result
 Detected pressure > 200
Results and Discussion

- Size

(a) 5mm (c) 15mm
(b) 10mm (d) 20mm

Phantom Model Specification

- Tumor Size:
 a) 5 mm
 b) 10 mm
 c) 15 mm
 d) 20 mm

- Depth: 10mm down
- Hardness: 300kPa

- Graphs for each size showing data analysis.
Results and Discussion

- Depth

Phantom Model Specification

- Tumor Depth:
 - a) 10 mm
 - b) 15 mm
 - c) 20 mm
 - d) 25 mm

- Size: 15mm
- Hardness: 300kPa

(a) 10mm

(b) 15mm

(c) 20mm

(d) 25mm
Results and Discussion

- Hardness

(a) 300kPa
(b) 297kPa
(c) 288kPa
(d) 142kPa

Phantom Model Specification

Tumor Hardness:
- a) 300 kPa
- b) 297 kPa
- c) 288 kPa
- d) 142 kPa

Depth: 10mm down
Size: 15mm
Conclusion

Advantages

- Wireless (Light)
- Standalone
- Real time monitoring
- Home health care purpose
- Magnified tactile feedback
- Definite detection
- Cheap
Further Research

Practical Consideration

- Upgrade Pressure Monitoring System

- Clinical trials
Thank You

E-mail : jjamieryu@melab.snu.ac.kr