A Label-Free Size-based Micro Coulter Counter System for Circulating Rare Tumor Cells

Hyoungeon Choi1, Chang Su Jeon2, Hark Kyun Kim3, Taek Dong Chung4, and Hee Chan Kim1,4

1Interdisciplinary Program, Bioengineering Major, Graduate School, Seoul National University, Seoul 110-744, Korea
2Department of Chemistry, Seoul National University, Seoul 151-747, Korea
3National Cancer Center, Ilsan-dong-gu, Goyang, 410-769, Korea
4Department of Biomedical Engineering, College of Medicine and Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 110-744, Korea

INTRODUCTION

◆ Circulating Tumor Cells
 - Cells that have detached from a primary tumor and circulate in the bloodstream
 - Powerful tool for medical application
 - cancer prognosis, diagnosis of minimal residual disease
 - assessment of tumor sensitivity to anticancer drugs
 - personalization of anticancer therapy
 - Characteristics
 - rare cells (about 1 – 100 cells per mL of whole blood)
 - epithelial type (EpCAM)
 - bigger size than peripheral blood cells

◆ Conventional CTC detection method
 - PCR-based approaches
 - merit: very sensitive
 - demerit: low specificity (can result in false positives)
 - Immunochemistry-based techniques
 - merit: multi-parameter (EpCAM, CD45, CK, etc)
 - demerit: misses some CTCs (lack of exact antibody), low purity
 - Size-based techniques using pores
 - merit: independent with parameters (like antibodies)
 - demerit: physical damages by high pressure

◆ Coulter counter-based CTC counting Method
 - Size-based cytometry approaches
 - merit: independent with parameters, no physical stresses, potential to sort CTCs without need a sample preparation

METHODOLOGY

◆ Schematic Diagrams of Developed System

RESULTS

◆ OVCAR-3 cells spiking Test

(a) Detection of CTCs in breast cancer patient samples with resistance change and fluorescence.
(b) The number of CTCs was lower than 5 spiked CTCs (at 10, 100, 500, and 1000 cells).

DISCUSSION

- Although test time for larger volume of blood is long, the simplicity of the microchannel and system enables the system to parallelize easily.
- The proposed system has a sufficient potential to detect CTCs in the blood.
- Flow cytometry-based detection system is expected to separate CTCs from blood.

*This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2005–2001287).